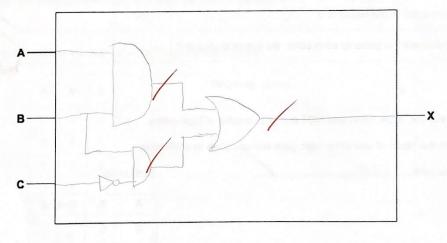
IGCSE Computer Science

N	am	e	:	

Chapter 10 Test: Boolean Logic


Q1

Consider this logic expression.

(a) Draw a logic circuit for this logic expression.

Each logic gate must have a maximum of two inputs.

Do not simplify this logic expression.

(b) Complete the truth table from the given logic expression.

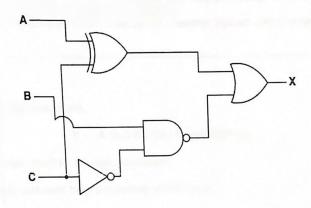
A	В	С	ALE	Working space	х
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	0	01
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	1		ì
1	1	1	-[0	1 100

- 7 NAND, OR and XOR are three types of logic gate.
 - (a) Four statements are shown about the logic gates.

Tick (\checkmark) to show which statements apply to each logic gate. Some statements may apply to more than one logic gate.

Statement	NAND (✓)	OR (✓)	XOR (✓)
if both inputs are 1, the output is 1		/	/
if both inputs are different from each other, the output is 1	/		V
if both inputs are 0, the output is 0	Ka	V	V /
if both inputs are the same as each other, the output is always 0			1/

(b)	NAND, OR	, XOR, NOR an	d NOT are	all examples	of logic gates.
-----	----------	---------------	-----------	--------------	-----------------


State the name of one other logic gate and comple	te its truth table	
---	--------------------	--

Logic gateAND	/
---------------	---

Truth table:

Α	В	Output
0	0	0
0	1	0
1	0	0 .
1	1	19 10

Consider the logic circuit:

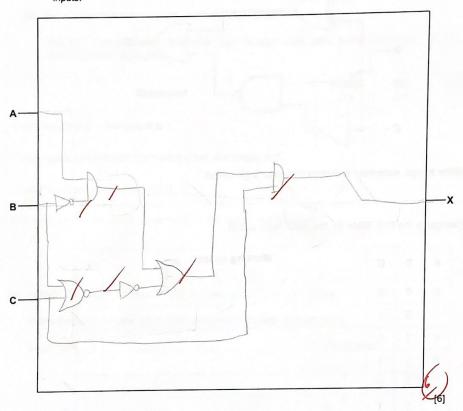
(a) Write a logic statement to match the given logic circuit.

(A XOR OR (E NAMD (NOTC))

[3]

(b) Complete the truth table for the given logic circuit.

	-	c	Working space		X
A	В		A YOR C	MAR BNAMD NOTC	
0	0	0	0		1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1		1	1
1	0	0	10 - 10 p. 10 - 10 M		
1	0	1	0	1	1
1	1	0		0	1
1	1	1	0		


[4]

8 Consider the following logic statement:

X = (((A AND NOT B) OR (NOT (B NOR C))) AND C)

(a) Draw a logic circuit to represent the given logic statement.

Do **not** attempt to simplify the logic statement. All logic gates must have a maximum of **two** inputs.

(b) Complete the truth table for the given logic statement.

Α	В	С	AMD E'	Morking spa	or.	х
0	0	0	ð	0	0	0
0	0	1	6			1
0	1	0	0			0
0	1	1	0		1	
1	0	0		0		0
1	0	1	1	T.		1
1	1	0	0			0
1	1	1	6		1	CV